Visualizing Electronic Structures of Quantum Materials

- By Angle Resolved Photoemission Spectroscopy (ARPES)

PART A: ARPES & Application

Yulin Chen

Oxford University / Tsinghua University

www.arpes.org.uk

Yulin.Chen@physics.ox.ac.uk; yulinchen@mail.tsinghua.edu.cn

How to "see" band structures

Basic principle of angle resolved photoemission spectroscopy

Heinrich Hertz

Albert Einstein

$$\begin{split} & Energy \ Conservation \\ & E_B = h\nu - E_{kin} - \Phi \\ & \text{Momentum Conservation} \\ & K_{||} = k_{||} + G_{||} \end{split}$$

Synchrotrons around the world

Advantages

- ✓ <u>Broad Spectrum</u> (from microwaves to hard X-rays): the users can select the wavelength required for their experiment.
- ✓ <u>High Flux</u>: high intensity photon beam allows rapid experiments or use of weakly scattering crystals.
- ✓ <u>High Brilliance</u>: highly collimated photon beam generated by a small divergence and small size source (spatial coherence)
- ✓ <u>High Stability</u>: submicron source stability
- ✓ **<u>Polarization</u>**: both linear and circular
- ✓ <u>Pulsed Time Structure</u>: pulsed length down to tens of picoseconds allows the resolution of process on the same time scale.

Developments of the Cyclotron

Cartoon

ARPES system

SDA Electron Analyzers

θ

ARPES system

TOF electron Analyzers

ARPES system

HERS endstation at ALS

Modern ARPES data taking

Modern ARPES data taking

Data acquired

Some of our works on TQMs

General principle

K (1/A)

E_F location

Background subtraction

Background subtraction

EDC

Momentum distribution curves

Momentum distribution curves

EDC

Difference EDC & MDC ?

$m_e = 0.35 m_0$

Carrier density ~4X10¹²/cm²

Application of ARPES to Topological quantum materials

Classification of matter

Gauge

What is a topological insulator (TI)

An Insulator that conducts

2D real space

Valence band

Band structure

Conduction band

We also live on the surface...

Why "topological"

Topologically distinct objects

Characterization of TIs

Z₂ topological invariant

Band theory [Fu, Kane & Mele (2007) Moore & Balents (2007), Roy (2007)]

With inversion symmetry: *v* represents the *Parity of occupied Bloch states*

Field theory [Qi, Zhang, et. al., (2008, 2009), Wilczek, (1987, 2009)]

Unique surface state properties of TIs

How to find TIs

Search for the unique band structure

How to discriminate bulk & surface?

Realization of TI state in Bi, Te,

Y. L. Chen, et. al., Science 325, 178 (2009)

TI Checklist:

- **1.** There exist Dirac surface states
- 2. There are odd number of Dirac fermions in a Brillouin Zone
- 3. The E_F is in the gap

Realization of TI state in Bi₂Te₃

Y. L. Chen, et. al., Science 325, 178 (2009)

- **TI Checklist:**
 - **1.** There exist Dirac surface states
 - There are odd number of Dirac fermions in a Brillouin Zone 2.
 - 3. The E_F is in the gap

0.2 k₇=-0.9π

0

-0.2

0

-0

0

-0.2

0.2 k_z=π

0.2 k,=0.9π

-0.2

0

0.2

Realization of TI state in Bi, Te,

Y. L. Chen, et. al., Science 325, 178 (2009)

- TI Checklist:
 - **1.** There exist Dirac surface states
 - 72. There are odd number of Dirac fermions in a Brillouin Zone
 - 3. The E_F is in the gap

Realization of TI state in Bi, Te,

Y. L. Chen, et. al., Science 325, 178 (2009)

TI Checklist:

- **1.** There exist Dirac surface states
- **2.** There are odd number of Dirac fermions in a Brillouin Zone
- 73. The E_F is in the gap

Protection of the time reversal symmetry

Massless Dirac fermion is protected by time reversal symmetry (Kramers' theorem)

Non-magnetic bulk & surface doing

TRS protection – bulk doping

Y. L. Chen, et. al., Science 329, 659 (2010)

TRS protection – surface doping

Y. L. Chen, et. al., Science 329, 659 (2010)

Surface doping

Photo assisted surface Oxygen doping

What if TRS is broken?

Y. L. Chen, et. al., Science 329, 659 (2010)

Formation of massive Dirac fermion if TRS is broken

Magnetic doing

Dirac fermion becomes massive

Y. L. Chen, et. al., Science 329, 659 (2010)

Realize insulating massive Dirac fermion state

Why insulating massive Dirac fermion state?

Completing the table of Hall effects

Realize new phenomena

Image Surface Monopole

Provide control for applications

Turn off surface conduction

All electric magnetic writing

New topological states

Search for topological superconductors

Majorana fermion

Quantum computation

Measure $(|0_{12}0_{34}>+|1_{12}1_{34}>)/\sqrt{2}$

Fu, Kane (2008) Hasan, Kane (2010) Qi, Zhang (2010)

Some candidates

Hor, et. al., (2010) Fu, Berg, (2010) Wray, et.al., (2010) TlBiTe₂

Hein/Swiggard, (1970) Yan, et. al., (2010) Chen, et. al., (2010)

A candidate for topological superconductors

Y. L. Chen et. al., Phys. Rev. Lett. 105, 266401 (2010)

A candidate for topological superconductors

Y. L. Chen et. al., Phys. Rev. Lett. 105, 266401 (2010)

PHYSICAL

What can TI be used in real life

Flexible transparent electrodes – band structure

H. L. Peng, et. al., Nature Chemistry, 4, 281 (2012)

Electronic structure of a 10nm Bi₂Se₃ film

Estimate surface states Carrier density (up and down surfaces): $2 \times \pi \times k_f^2 / (2 \times \pi)^2 = 0.0016 \text{ Å}^{-2} = 1.6 \times 10^{13} \text{ cm}^{-2}$

Effective 2D density of bulk carrier for a 10nm film is roughly: $(4/3 \times \pi \times k_f^3 \times (10nm))/(2 \times \pi)^3 = 0.0017 \text{ Å}^{-2} = 1.7 \times 10^{13} \text{ cm}^{-2}$

Transparent electrode for IR application

Flexible transparent electrodes - Transmittance

H. L. Peng, et. al., Nature Chemistry, 4, 281 (2012)

Flexible transparent electrodes - Durability

H. L. Peng, et. al., Nature Chemistry, 4, 281 (2012)

Bending test

and

test

Flexible transparent electrodes

Flexibility and durability test

Dirac electron systems

Can we find other topological matter?

 $\bullet \bullet \bullet \bullet \bullet \bullet$

3D Topological Dirac Semi-metal (TDS)

Z. K. Liu. et. al., Science, 343, 864 (2014)

Interesting phenomena

A platform for rich novel states

- Giant diamagnetism
 E. Röber, et. al., *Phys. Status Solidi B*, **93**, K99 (1979)
 M. Koshino, et. al., *Phys. Rev. B*, **81**, 195431 (2010)
- Linear quantum magnetoresistance in bulk

A. A. Abrikosov, *Phys. Rev. B*, **58**, 2788 (1998)
W. Zhang *et al.*, *Phys. Rev. Lett.*, **106**, 156808 (2011)

• Oscillating QSH effect in quantum well W. Zhang *et al., Phys. Rev. Lett.,* **106**, 156808 (2011). Z. Wang *et al., Phys. Rev. B* **85**, 195320 (2012)

3D Topological Dirac Semi-metal (TDS)

3D Topological Dirac Semi-metal (TDS)

Z. K. Liu. et. al., Science, 343, 864 (2014)

Crystal structure

Brillouin Zone

How to identify a 3D TDS?

The 3D counterpart of graphene

Identify the band structure

How to determine *kz*?

Photon energy dependent ARPES measurement

Extracting kz dispersions

 $I(k_z, E) \propto [|M_{f,i}^k|^2 \cdot A(k_z, E) \cdot f(E)] * R(\delta k_z, \delta E)$

 $|M_{f,i}^k|$: Photoemission matrix element A(k, E) Spectrum function

$$f(E) = (e^{\frac{E}{k_B T}} + 1)^{-1}$$
$$R(\delta k, \delta E) = e^{\left\{-\frac{1}{\sqrt{2}} \cdot \left(\left(\frac{K_Z}{\delta K_Z}\right)^2 + \left(\frac{E}{\delta E}\right)^2\right)\right\}}$$

Extracting kz dispersions

Multiple BZ mapping along kz

Complete 3D Fermi-surface mapping

Surface with Na-vacancies

Projections to (kx, ky, E) space

Projection to (ky, kz, E) space

- Vx = 2.75 eV•A or Vy = 2.39 eV∙A or
- $Vz = 0.6 eV \cdot A$ or
- 4.17×10⁵m/s 3.63×10⁵m/s 0.95×10⁵m/s

k^Dz

Unusual hyperbolic dispersion

Dispersions at different kx, ky values

Dispersions at different kz values

Observing the Dirac point and upper cone

Protection of the crystalline symmetry

Emerge of the surface state

Results of the Na vacancies

The problem of Na₃Bi

Too reactive in ambient environment ...

Sample

Hard to handle and used in functional devices

A stable 3D TDS, Cd₃As₂

Z. K. Liu. et. al., Nature Materials, 13, 677 (2014)

Crystal structure

Brillouin Zone

A stable 3D TDS, Cd₃As₂

Z. K. Liu. et. al., Nature Materials, 13, 677 (2014)

3D Brillouin Zone

Dispersion at different k_z

A stable 3D TDS, Cd₃As₂

Projection to (K_x, k_y, E)

Projection to (K_y,k_z,E)

Can we find other topological matter?

Topologically trivial world

Topologically non-trivial world

What's next?